Page 1 of 3
Java RMI

OVERVIEW

Distributed systems are those where components running on multiple computers work together on atask. Java Remote M ethod I nvocation
(RMI) is amechanism for distributed Java components to communicate with each other. RMI enables objects in one Java Virtual Machine
(VM) to be used by objectsin adifferent VM. These JVMs may even be on different computers spread across the Internet. In a normal
Java program, all the objectsreside in asingle VM and are all therefore local objects. Objects are called remote if they reside in a different
JVM and normally (i.e. without RMI) they cannot interact with local objects. Distributed systems are usually divided into server components
that make some functionality available and client components that call upon those server components for service. RMI specifies that server
components are Java objects running on a server computer and client components are Java programs running on some number of client
computers. An individual Java program (and the computer it runs on) may take on the role of client, server, or both.

Server objects make themselves available to clients by registering with the rmiregistry tool running on the same server computer (via

j ava. rni . Nami ng. r ebi nd). Client programs obtain references to desired server objects by querying the rmiregistry on that server's
computer (viaj ava. rmi . Nami ng. | ookup). Once areference to aremote object is obtained, its methods may be called just asif it were a
local object. In addition, if local objects are passed as parameters to aremote method, RM| sends a copy of those objects to the remote
computer. NOTE: Objects that are only passed as parameters do not need to be registered with rmiregistry.

To use RMI, aserver object must publish its applications programming interface (API) via some Java interface which, itself, must extend the
j ava. rni . Renot e interface. Any server methods to be made available to clients must both, be declared in thisinterface, and be declared to
throw j ava. r ni . Renot eExcepti on. Clientsactually lookup references to this published interface rather than the server object itself. This
allows RMI to substitute a stub implementation (a.k.a. proxy) of thisinterface which communicates with the real server object that is running
on the server's VM. The stub code (generated by the rmic tool) handles all the work of copying parameters back and forth between JVMs.
The process of converting parameters to byte streams (via Java serialization), to be sent over a socket connection, is called marshalling. The
the process of taking serial data and converting back to Java objects (on the receiving end of the socket) is called unmarshalling. RMI takes
care of al thisviastubs running on the client and their partner skeletons running on the server side that in turn call the actual server objects.
The actual server object must extend thej ava. rmi . server. Uni cast Renot eQbj ect class [or use the more advanced Java Activation
Framework (JAF)] .

simulated [ Server Object |
communication path

Client Program

Server Interface actual communication path

|
|
| Stub
|
|

| Skeleton |

RMI internals [ RMlinternals |

The Internet |

Figure 1. the RMI “protocol stack”

Standard web servers are used to copy local objects and interfaces to remote computers, in the same way that they can send Java Applet
objects to remote browsers. So, all server computers must have aweb server and any client computers that wish to pass local objects as
parameters to remote methods must also have aweb server. Java's ability to dynamically load bytecodes means that programs looking up
remote objects may find and run them even though they were written on a different computer. In fact, aslong as the server’s public
interface was published when the client program was written, the server objects may have actually been written at alater date[ aslong as
each isregistered viar ebi nd() before the client calls| ookup() ]. Server objects are always registered with the rmiregistry running on the
same computer as the server object itself. NOTE: the server objects do not have to “keep themselves alive” viathread waits, etc. because as
long as either the rmiregistry or some client program contains areference to a server object, it will not be garbage collected. Also, the
rmiregistry process keeps the process of the VM containing the server objects alive, so, the registering main program can exit as soon as it

has finished doing rebinds.
COMPONENTS TO BUILD AND DEPLOY

With RMI, since multiple systems need to share Java class files, both at compile time and runtime, both locally viathe CLASSPATH and also
remotely viaweb servers, the build procedures are more complicated than normal Java programs. Multiple components must be devel oped,
built, and deployed, and multiple programs must be run simultaneously for a distributed system using RMI to work. For dynamic code
loading to work, certain class files will each need to be published via aweb server on its parent computer. Even with dynamic class loading
set up, some files (e.g. the Server API interface class files) must still be made available to all computers aslocal files. NOTE: It is possible
for the same computer to be used as both the server and the client computer in the scenarios shown below.

Copyright 2002, PolyGlot, Inc. (Bruce Wallace)



Page 2 of 3
The following are the components one must develop for even the smplest RMI system:
1) One or more Server Interfaces
2) One or more Server Objects
3) Server Stubs (that are generated by the rmic tool)
4) A program to register the Server Objects with the rmiregistry tool
5) A Client Program that looks up and calls one or more Server Objects

The following are the processes required to be running for even the simplest RMI system:

1) A web server running on the server computer

2) Each client computer that needs to send custom objects as RM| parameters requires its own web server
3) An rmiregistry running on the server computer

4) A VM running on the server computer containing the registered Server Object(s)

5) A VM running on the client computer running the Client Program that accesses Server Objects

The following steps are required to build even the simplest RMI system:

1) Compile the Server Interface(s) and make classfile(s) available in the CLASSPATH on both client and server
2) Compile the Server program on the server computer

3) Compile the Client program on the client computer

4) Use the rmic tool on the server computer to generate Server Stub classfiles

5) copy the Server Interface and Stub classes to an area accessible via the Server computer’s web server

The following steps are required to run even the simplest RMI system:

1) Run the rmiregistry tool as a process on the server computer

2) Run the web server as a process on the server computer (with shared classfilesin public area)
3) Run the program that registers the Server Objects on the server computer

4) Run the Client Program on the client computer

NOTE: A simple substitute for a full-blown web server is available from Sun that will serve classes as needed. It can be downloaded from:
ftp://ftp.javasoft.com/pub/jdkl1.1/rmi/class-server.zip

Client Host: berti e Server Host: j eeves
Q optional Web Server
| Web Server |
optional parameter server interfaces
object classes and rmic stubs

@ D @ oo o0
@ @ ® o0

server stubs
downloaded into
JVM transparently

via lookup / rmiregistry
I From

client .‘\ RMI or server object
object RMIAIOP server

JVM containing  client calls server protocol replies to JVM containing
client object(s) nr;:;:]%d;s;"g&ig’s stubs skeletons client calls server object(s)
T e L
as parameters
" E

Figure 2. RM| Components, Processes, and Computers (aka Hosts)

Copyright 2002, PolyGlot, Inc. (Bruce Wallace)



Page 3 of 3
Specific Example with Code
This small example RMI system will use the Sun class server and run everything on asingle MS Windows computer. Three directories
should be created for this example; c:\WEB_server, c:\RMI_server, and c:\RMI_client. Four Command (aka DOS) windows should be opened
(3 server windows and 1 client window). A Java JDK should beinstalled and available via the default path. No CLASSPATH environment
variableis needed for this example. Thereisa Java security policy file that can be used for both the client and the server. A copy should be
placed in both c:\RMI_server and c:\RMI_client. Its contents are:

 genericRM| .policy - given in advance to both the client and server; defines access needed for RMI

grant

{ o o
permi ssion java. net. Socket Permi ssion "*:1024-65535", "connect, accept"”;
permi ssion java. net. Socket Pernmi ssion "*:80", "connect";

¥

SERVER WINDOW #1 will run the rmiregistry tool. It should have no CLASSPATH set and should run in adirectory with no local .class

files. There is no custom code for this window.
>cd c:\
>rmregistry

SERVER WINDOW #2 will run the program registering the Server Object. The source for the Server Object, its main program that acts to

register that object, and its public API interface are below. These .javafiles should be placed in c:\RMI_server.
>cd c:\RM _server

>j avac MyServer.java

>copy Mylnterface.class c:\WEB_server

>rmc MyServer

>copy MyServer_*.class c:\WEB_server

>REM wait until WNDOW#3 is set up and classServer is running, then continue

>java -Djava.rm .server.codebase=http://local host/ -Djava.security.policy=genericRM.policy M/Server

* Myl nterfacejava - given in advance to both the client and server; defines server methods available remotely
public interface MyInterface extends java.rm.Renpte
{ public String getAnswer() throws java.rni.RenoteException;

}

* MyServer.java - aserver object and a utility main program to register it.
inport java.rm.*;
import java.rm.server. Uni cast Renpt eObj ect;
public class MyServer extends Unicast RenoteCbject inplenents Mylnterface

{
public MyServer () throws RenpteException{ super(); }
public String getAnswer(){ return "theAnswer"; }
public static void main( String[] args )
{ System set Securi t yManager ( new RM SecurityManager() );
try
{ MyServer nme = new MyServer();
Nanmi ng. rebind( "/ MServer", ne );
} catch( Exception x ){ Systemout.printin("Err["+x+"]1"); }
}
}

SERVER WINDOW #3 will run the Sun class server (acting as aweb server) and its source should be downloaded and unzipped into the
WEB_server\examples\classServer directory sinceit is defined in the examples.classServer package. The class files from Window #2 should
be copied before running the classServer. The port and the directory to find the public class files are the two parameters to classServer.

>cd c:\VWEB_server

>j avac exanpl es/cl assServer/*.java

>j ava exanpl es. cl assServer. C assFil eServer 80 c:\WEB_server

CLIENT WINDOW will run the Client Program whose source is below.

>cd c:\RM _client

>copy c:\RM _server\ Myl nterface.class .

>javac MyCient.java

>java -Dj ava. security. policy=generi cRM.policy MCient

* MyClient.java - aprogram remotely using a Server Object. NOTE: If no server hostname is specified to lookup then localhost is assumed.
inport java.rm.*;
public class MyCient

public static void main( String[] args )
{ System set Securi t yManager ( new RM SecurityManager() );
try
{ Renpte rObj = Nami ng. | ookup("//1ocal host/ M/Server");
M/Interface x = (Mylnterface) rQbj;
Systemout.println("Answer is ["+ x.getAnswer() +"1");
} catch( Exception x ){ Systemout.printin("Err["+x+"]1"); }

Copyright 2002, PolyGlot, Inc. (Bruce Wallace)



